Physics 1600 7 Energy and Newtonian Mechanics
7.1 Energyinonedimension ......................176
7.1.1 Work-energytheorem....................178
FがF(x)としてxのsingle val funcで表せる時、theoremが成り立つ
integral F(x) dx= W
まあ確かにforce=F(x)ならそのintegral dxの値はconserveするわな、と数学的に理解できた気がするblu3mo.icon
implication
経路に関係なく、スタートとエンドが一緒ならenergyの変化は同じ
ここからpotentialみたいな概念が導けるのか
friction forceはトラップで、
magnitudeは一定でも、移動方向によってforceの方向が変わるのでF(x)ではない
7.1.2 Conservativeforces.....................180
7.1.3 Potentialenergy.......................181
work e theoremで、Work = ΔKE
workを使うとKEが生える
potential Eは、Work = - ΔPotential E
Potentialを使ってWorkが生まれる
ここで-を使って定義することで、KEとの整合性が取れて、ΔKE + ΔPE = 0と言える
7.1.4 Energydiagrams ......................184
7.1.5 Motionnearequilibriumpoints..............184
As noted above, the presence of a maximum or minimum means that dUdx = 0 so there is no force on the particle at 4928 xm.
7.1.6 Work and potential energy for multiple forces . . . . . . 186
conservativeとnon-conservativeに分けて考える、みたいな
7.1.7 Energy conservation and non-mechanical forms of energy190
7.2 Work-energy theorem in three dimensions . . . . . . . . . . . . 191
7.2.1 Conservativeforces.....................194
7.2.2 Application of the three-dimensional work-energy theorem..............................196
7.2.3 Potential energy in threedimensions . . . . . . . . . . . 201
7.2.4 Generalizedenergyconservation . . . . . . . . . . . . . 203
7.2.5 Examples applying energy conservation . . . . . . . . . 203
ここは絶対追うblu3mo.icon*3
7.3 Potential energy, force, equipotential surfaces . . . . . . . . . . 208
partial deriv.
df/dt =
https://kakeru.app/22ed52da6bb3017804086fa444abea18 https://i.kakeru.app/22ed52da6bb3017804086fa444abea18.svg
https://kakeru.app/6004296ab92de1005066a5311cc7952f https://i.kakeru.app/6004296ab92de1005066a5311cc7952f.svg
7.3.1 Functionsofmultiplevariables . . . . . . . . . . . . . . 208
7.3.2 Force from gradient of the potential energy . . . . . . . 213
7.4 Equipotential surfaces .......................216
7.5 Symmetry and potential energy ..................219
7.5.1 Inversionsymmetries....................219
7.5.2 Translationalsymmetries..................222
7.5.3 Cylindricalsymmetries...................223
7.5.4 Sphericalsymmetries....................224